报告时间:2019年9月27日16:30
报告地点:数学院会议室(玉衡北302)
报告题目:Geometric singular perturbation analysis to Camassa-Holm Kuramoto-Sivashinsky Equation
邀请人:陈爱永
报告人简介:李骥,华中科技大学金沙威尼斯欢乐娱人城教授,博士生导师,2008年本科毕业于南开大学数学试点班,2012年在美国杨伯翰大学取得博士学位,后在明尼苏达大学和密西根州立大学做博士后。主要研究几何奇异摄动理论及其应用,以及相应的随机扰动理论。在TAMS , JDE, JFA,DCDS等杂志发表论文十多篇。
报告摘要:We analyze a singularly Kuramoto-Sivashinsky perturbed Camassa-Holm equation with methods of the geometric singular perturbation theory. Especially, we study the persistence of smooth and peaked solitons. Whether a solitary wave of the original Camassa-Holm equation is smooth or peaked depends on whether the parameter 2k is equal to 0, which is related to the critical wave speed. On the one hand, we prove that if 2k > 0, then a unique solitary wave persists under singular Kuramoto-Sivashinsky perturbation. On the other hand, we show that if 2k = 0, then any observable soliton fails to persist.